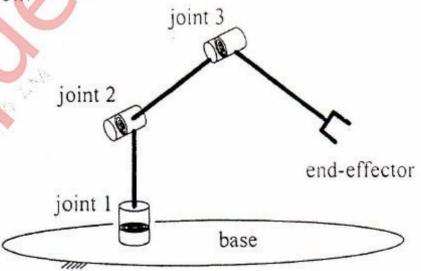

BE, SOM - VIII, Electromics, CBGS, SHEDIG Robotics QP CODE: 732401


(3 Hours)

[Total Marks: 80]

- N. B.: 1. Question No. 1 is compulsory.
 - 2. Attempt any three questions from the remaining five questions.
 - 3. Assume suitable data if necessary.
 - 4. Figures to the right indicate full marks.
- Q.1. Answer following questions in brief.
 - a Draw the approximate workspace for the following robot. Assume the dimensions of the base and other parts of the structure of the robot are as shown below.

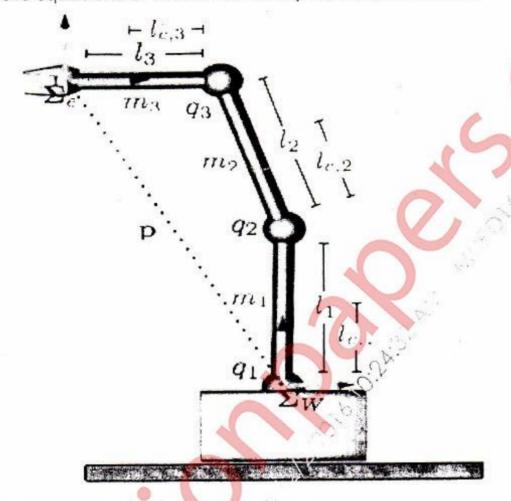
- b What is a homogeneous transformation matrix? Give the transformation (05) matrix for pure translation and rotation matrix about y-axis.
- c Discuss wave-front planner in brief. (05)
- d What is Histogram? Explain the use of Histogram in image processing. (05)
- Q.2. a A 3-DOF robot arm has been designed for applying paint on flat walls, as (12) shown below.

- Assign coordinate frame as necessary based on the D-H representation
- Write parameter table
- Find the ^UT_H matrix.

[TURN OVER

b Define the following terms .

Roll, Pitch and Yaw angles


- · Euler angles
- Articulated joints

Q.3. a Discuss differential rotation about reference axes.

Derive the equations of motion for the system shown below:

(08)

(80)

Q.4.	а	a Explain Bug1 algorithm and compare it with Bug2 algorithm.	
1	b	Explain how you will use attractive/repulsive potential function method to	(10)
		handle moving objects.	

- Q.5. a What is visibility graph? Explain algorithm to construct visibility graph. (10)
 - b Differentiate between (10)
 - Path versus trajectory
 - II. Joint space versus Cartesian space
- Q.6. Write short notes on

	-	Trajectory planning	(05)
10.	а	rajectory planning	(03)

- b Robot applications (05)
- c Potential function in non-Euclidean spaces (05)
- d Construction of GVD (05)

----- XXX -----

Wild Page